Identifikasi Tingkat Kematangan Buah Naga Merah (Hylocereus Costaricensis) Melalui Pendekatan Artificial Neural Network (Ann)

Penulis

  • Dedy Armiady Fakultas Ilmu Komputer Universitas Almuslim Bireuen - Aceh

DOI:

https://doi.org/10.51179/tika.v7i3.1576

Kata Kunci:

Artificial Neural Network, Backpropagation, Buah Naga Merah, Klasifikasi, Gizi buruk, Antropometri, Pengolahan Citra

Abstrak

Perkembangan teknologi yang masif terus terjadi dan merambah ke segala sektor kehidupan masyarakat dunia. Di Indonesia khususnya, perlu dilakukan berbagai penelitian untuk mengembangkan berbagai teknologi 4.0 di bidang pertanian dan menerapkannya untuk meningkatkan kualitas dan kuantitas hasil produksi. Salah satu teknologi di bidang pertanian yang perlu dikembangkan adalah identifikasi kematangan buah, di mana hal ini perlu dilakukan mengingat keterbatasan indra manusia dalam menentukan tingkat kematangan berdasarkan nilai RGB dari buah. Dalam penelitian ini dilakukan pendekatan Artificial Neural Network (ANN) dengan algoritma Backpropagation. Dataset yang digunakan terdiri dari 90 foto buah naga untuk data training dan 15 foto buah naga untuk data testing. Adapun hasil yang didapatkan yaitu model ANN yang dibangun mampu melakukan identifikasi tingkat kematangan buah dengan akurasi 100% berdasarkan dataset yang digunakan

Unduhan

Data unduhan belum tersedia.

Referensi

Abdul Sahli, F., Norazwina, Z., & Noor Athirah, D. (2019). Application of Artificial Neural Network to Improve Pleurotus sp. Cultivation Modelling . MATEC Web of Conferences, 255. https://doi.org/10.1051/matecconf/201925502010

Arkeman, Y. (2013). SMART-TIN: An Integrated And Intelligent System For The Design og Adaptive Agroindustry (A Conseptual Framework). 2 Nd International Conference on Adaptive and Intelligent Agroindustry ( ICAIA ) September 16– 17 , 2013.

Bima, I. W. K., Suryani, V., & Wardana, A. A. (2020). A Performance Analysis of General Packet Radio Service (GPRS) and Narrowband Internet of Things (NB-IoT) in Indonesia. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. https://doi.org/10.22219/kinetik.v5i1.947

Chakraborty, S., Mandal, S. B., & Shaikh, S. H. (2022). Quantum image processing: challenges and future research issues. International Journal of Information Technology (Singapore), 14(1). https://doi.org/10.1007/s41870-018-0227-8

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the stroop effect. Psychological Review, 97(3). https://doi.org/10.1037/0033-295X.97.3.332

Du, L. B., & Lowery, A. J. (2010). Improved single channel backpropagation for intra-channel fiber nonlinearity compensation in long-haul optical communication systems. Optics Express, 18(16). https://doi.org/10.1364/oe.18.017075

Farida, I., Setiawan, R., Maryatmi, A. S., & Juwita, N. (2020). The Implementation of E-Government in the Industrial Revolution Era 4.0 in Indonesia. International Journal of Progressive Sciences and Technologies (IJPSAT, 22(2).

Ghee, L. K., & Voon, L. C. (2021). The effect of Hylocereus polyrhizus (red dragon fruit) on whole gut transit time of young Malaysian adults. Malaysian Journal of Nutrition, 27(1). https://doi.org/10.31246/MJN-2020-0100

K, HARITHPRIYA., & R, JEYACHANDRAN. (2019). In-vitro immunomodulatory activity of dragon fruit extract. International Journal of Pharma and Bio Sciences, 10(3). https://doi.org/10.22376/ijpbs.2019.10.3.b99-106

Krauser, L. E., Stevens, F. R., Gaughan, A. E., Nghiem, S. v., Thy, P. T. M., Duy, P. T. N., & Chon, L. T. (2022). Shedding Light on Agricultural Transitions, Dragon Fruit Cultivation, and Electrification in Southern Vietnam Using Mixed Methods. Annals of the American Association of Geographers, 112(4). https://doi.org/10.1080/24694452.2021.1940825

Liyanaarachchi, V. C., Nishshanka, G. K. S. H., Sakarika, M., Nimarshana, P. H. V., Ariyadasa, T. U., & Kornaros, M. (2021). Artificial neural network (ANN) approach to optimize cultivation conditions of microalga Chlorella vulgaris in view of biodiesel production. Biochemical Engineering Journal, 173. https://doi.org/10.1016/j.bej.2021.108072

Mathilda Gian Ayu. (2020). Perkembangan dan Penggunaan IoT di Indonesia Tahun 2021 Diprediksi Meningkat. Cloud Computing Indonesia.

Mazur, M. (2016). A Step by Step Backpropagation Ex- ample. Network.

Mkomwa, S., Hongwen, L., & Desbiolles, J. (2014). Conference on Conservation Agriculture for Smallholders in Asia and Africa. Conference on Conservation Agriculture for Smallholders in Asia and Africa.

Najwa, M., Warsito, B., & Ispriyanti, D. (2017). Pemodelan Jaringan Syaraf Tiruan Dengan Algoritma One Step Secant Backpropagation dalam Return Kurs Rupiah Terhadap Dolar Amerika Serikat. Jurnal Gaussian, 6(1).

Nalendra, A. K. (2021). Rapid Application Development (RAD) model method for creating an agricultural irrigation system based on internet of things. IOP Conference Series: Materials Science and Engineering, 1098(2). https://doi.org/10.1088/1757-899x/1098/2/022103

Nastiti, F., & Abdu, A. (2020). Kajian: Kesiapan Pendidikan Indonesia Menghadapi Era Society 5.0. Edcomtech Jurnal Kajian Teknologi Pendidikan, 5(1). https://doi.org/10.17977/um039v5i12020p061

Pradana, I. G. M. T., Djatna, T., & Hermadi, I. (2020). Blockchain modeling for traceability information system in supply chain of coffee agroindustry. 2020 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2020. https://doi.org/10.1109/ICACSIS51025.2020.9263214

Purwandoko, P. B., Seminar, K. B., Sutrisno, & Sugiyanta. (2019). Development of a smart traceability system for the rice agroindustry supply chain in Indonesia. Information (Switzerland), 10(10). https://doi.org/10.3390/info10100288

Putri, A. W. (2021). Implementasi Artificial Neural Network (ANN) Backpropagation Untuk Klasifikasi Jenis Penyakit Pada Daun Tanaman Tomat. MATHunesa: Jurnal Ilmiah Matematika, 9(2). https://doi.org/10.26740/mathunesa.v9n2.p344-350

Rachman, L. M., Saleh, A., Wetik, J. D., Namuzadi, N., & Ain, A. Q. (2021). Model development of sustainable wetland rice farming based on rice estate community and smart farming. IOP Conference Series: Earth and Environmental Science, 648(1). https://doi.org/10.1088/1755-1315/648/1/012206

Ruan, Y., Xue, X., & Shen, Y. (2021). Quantum Image Processing: Opportunities and Challenges. In Mathematical Problems in Engineering (Vol. 2021). https://doi.org/10.1155/2021/6671613

Sardjono, W., Selviyanti, E., Hobri, & Azizah, R. (2021). The relationship between internet growth and implementation of the internet of things. Journal of Physics: Conference Series, 1836(1). https://doi.org/10.1088/1742-6596/1836/1/012030

Siagian, sakida hepni. (2020). Sistem Monitoring Pengairan Tanaman Padi Di Dalam Sawah Menggunakan Esp8266 Berbasis Internet of Things (Iot). In Jurnal Pembangunan Wilayah & Kota (Vol. 1, Issue 3).

Sinaga, M. (2019). Adoption of IoT at Home in Indonesia. University of Twente, January.

Sittón-Candanedo, I., Alonso, R. S., Corchado, J. M., Rodríguez-González, S., & Casado-Vara, R. (2019). A review of edge computing reference architectures and a new global edge proposal. Future Generation Computer Systems, 99. https://doi.org/10.1016/j.future.2019.04.016

Supriyanto, Noguchi, R., Ahamed, T., Rani, D. S., Sakurai, K., Nasution, M. A., Wibawa, D. S., Demura, M., & Watanabe, M. M. (2019). Artificial neural networks model for estimating growth of polyculture microalgae in an open raceway pond. Biosystems Engineering, 177. https://doi.org/10.1016/j.biosystemseng.2018.10.002

Susanti Vh, E., Utomo, S. B., Syukri, Y., & Redjeki, T. (2012). PHYTOCHEMICAL SCREENING AND ANALYSIS POLYPHENOLIC ANTIOXIDANT ACTIVITY OF METHANOLIC EXTRACT OF WHITE DRAGON FRUIT (Hylocereus undatus). Indonesian J. Pharm, 23(1).

Wirawan, V. (2020). Penerapan E-Government dalam Menyongsong Era Revolusi Industri 4.0 Kontemporer di Indonesia. Jurnal Penegakan Hukum Dan Keadilan, 1(1). https://doi.org/10.18196/jphk.1101

Yu, X., & Zhang, B. (2021). Innovation Strategy of Cultivating Innovative Enterprise Talents for Young Entrepreneurs Under Higher Education. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.693576

Unduhan

Diterbitkan

10-12-2022

Cara Mengutip

Armiady, D. (2022). Identifikasi Tingkat Kematangan Buah Naga Merah (Hylocereus Costaricensis) Melalui Pendekatan Artificial Neural Network (Ann). Jurnal Tika, 7(3), 265–273. https://doi.org/10.51179/tika.v7i3.1576