Sentiment Analysis, Text Mining APPLICATION OF SENTIMENT ANALYSIS AND NAIVE BAYES TO ELECTRIC VEHICLE USAGE OPINIONS ON TWITTER

Authors

  • Adittia Agustian Universitas Buana Perjuangan Karawang
  • Tukino Universitas Buana Perjuangan Karawang
  • Fitria Nurapriani Universitas Buana Perjuangan Karawang

DOI:

https://doi.org/10.51179/tika.v7i3.1550

Keywords:

Twitter, Electric Vehicles, KTT G20, Sentiment Analysis, Naive Bayes, Pythons, API

Abstract

Twitter is the most popular social media today. Can find out various Twitter responses that fall into the positive, neutral, or negative categories. Technological advances at this time are so rapid that vehicles will provide fuel for electric power or are called electric vehicles. Indonesia has become a country that encourages acceleration in the use of electric vehicles, according to the Minister of State-Owned Enterprises circular letter. The advancement of electric-powered vehicles is an innovation and technology that will continue to develop and transform. With the presence of the electric vehicle, the Indonesian government will serve as an important guest vehicle at the G20 Summit activities in Bali, Indonesia. The purpose of this study is to determine the public's response to electric vehicles which are currently widely used among the people of Indonesia. To find out the public response, sentiment analysis is needed through the responses of Twitter users. By generating positive, neutral, or negative categories. Based on the results of the classification of sentiment analysis on the support of electric vehicles. Data collection uses the Twitter API as an open source that can retrieve Twitter user responses, then the data cleaning process is carried out, converting Indonesian to English, then tested using the Naïve Bayes algorithm, and visualizing twitter data using python. Based on the classification results, public response to electric vehicles is more positive with 82% precision and 44% recall. By having 80% data accuracy through the Naive Bayes confusion matrix through the text mining process, python text blob, and word cloud as the relationship between words and twitter text

Downloads

Download data is not yet available.

References

Azizi Hakim, Moh, Erik Heriana, Sony Sukmara, Dwi Susanto, Fakultas Teknologi dan Informatika universitas Mathla, and ul Anwar Banten. 2022. “Implementasi Kendaraan Dengan Penggerak Motor Listrik.” 02(01):2022.

Darwis, Dedi, Nery Siskawati, and Zaenal Abidin. 2021. “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg NasionalA.” Jurnal Tekno Kompak 15(1):131. doi: 10.33365/jtk.v15i1.744.

Duei Putri, Dianati, Gigih Forda Nama, and Wahyu Eko Sulistiono. 2022. “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier.” Jurnal Informatika Dan Teknik Elektro Terapan 10(1):34–40. doi: 10.23960/jitet.v10i1.2262.

Fauziyyah, Anni Karimatul. 2020. “Analisis Sentimen Pandemi Covid19 Pada Streaming Twitter Dengan Text Mining Python.” Jurnal Ilmiah SINUS 18(2):31. doi: 10.30646/sinus.v18i2.491.

Gaikindo. 2020. GAIKINDO Auto Insight.

Kemp, Simon. 2022. “Digital-2022-Indonesia-February-2022-V01_compressed.Pdf.” 24–84.

Khairunnisa, Syifa, Adiwijaya Adiwijaya, and Said Al Faraby. 2021. “Pengaruh Text Preprocessing Terhadap Analisis Sentimen Komentar Masyarakat Pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19).” Jurnal Media Informatika Budidarma 5(2):406. doi: 10.30865/mib.v5i2.2835.

Lia Hananto, April, Priati Assiroj, Bayu Priyatna, Nurhayati, Ahmad Fauzi, Aviv Yuniar Rahman, and Shofa Shofiah Hilabi. 2021. “Analysis of Drug Data Mining with Clustering Technique Using K-Means Algorithm.” Journal of Physics: Conference Series 1908(1). doi: 10.1088/1742-6596/1908/1/012024.

Meiyanti, Rini, and Cut Lika Mestika Sandy. 2021. “Klasifikasi Jenis Suara Wanita Berdasarkan Register Suara Dalam Teknik Bernyanyi Secara Real Time Menggunakan Algoritma BAM Dan Algoritma Viterbi.” Jurnal Tika 5(3):60–69. doi: 10.51179/tika.v5i3.17.

Prianjani, Dana, and Wahyudi Sutopo. 2018. “Studi Komparasi Penelitian Standar Kendaraan Listrik Dunia Dengan Standar Kendaraan Listrik Indonesia.” Prosiding SNST Ke-9 13.

Priyatna, Bayu, April Lia Hananto, and Muhammad Nova. 2020. “Application of UAT ( User Acceptance Test ) Evaluation Model in Minggon E-Meeting Software Development.” Systematics 2(3):110–17.

Tukino, Baenil Huda. 2019. “TechnoXplore Jurnal Ilmu Komputer & Teknologi Informasi ISSN : 2503-054X Vol 4 No: 1, April 2019.” Jurnal Ilmu Komputer & Teknologi Informasi 4(1):28–37.

Tulus Pangapoi Sidabutar, Victor. 2020. “Kajian Pengembangan Kendaraan Listrik Di Indonesia: Prospek Dan Hambatannya.” Jurnal Paradigma Ekonomika 15(1):21–38. doi: 10.22437/paradigma.v15i1.9217.

Veza, Ibham, Asif Afzal, M. A. Mujtaba, Anh Tuan Hoang, Dhinesh Balasubramanian, Manigandan Sekar, I. M. R. Fattah, M. E. M. Soudagar, Ahmed I. EL-Seesy, D. W. Djamari, A. L. Hananto, N. R. Putra, and Noreffendy Tamaldin. 2022. “Review of Artificial Neural Networks for Gasoline, Diesel and Homogeneous Charge Compression Ignition Engine: Review of ANN for Gasoline, Diesel and HCCI Engine.” Alexandria Engineering Journal 61(11):8363–91. doi: 10.1016/j.aej.2022.01.072.

Published

2022-12-10

How to Cite

Agustian, A., Tukino, & Nurapriani, F. (2022). Sentiment Analysis, Text Mining APPLICATION OF SENTIMENT ANALYSIS AND NAIVE BAYES TO ELECTRIC VEHICLE USAGE OPINIONS ON TWITTER. Jurnal Tika, 7(3), 243–249. https://doi.org/10.51179/tika.v7i3.1550

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.