Kajian Faktor Produksi Usahatani Padi Sawah Dalam Upaya Peningkatan Produksi Program Nasional Food Estate Di Kalimantan Tengah

Study Of Rice Farming Production Factors In An Effort To Increase Production For The National Food Estate Program In Central Kalimantan

Revi Sunaryati, Reni Rahmawati, Tutwuri Handayani, Ina Karuehni

Diterima: 2 Januari 2024. Disetujui: 24 Januari 2024. Dipublikasi: 02 Februari 2024

ABSTRAK Penelitian ini bertujuan untuk menganalisis faktor-faktor produksi usahatani padi sawah dalam upaya peningkatan produksi padi pada program strategi nasional Food Estate di Kalimantan Tengah. Faktor-faktor produksi yang digunakan petani seperti lahan (X1), benih (X2), kapur (X3), pupuk (X4), pestisida (X5), tenaga kerja (X6), dan alsintan (X7), serta variabel dummy seperti sistem tanam (D1), dan pola tanam (D2) berpengaruh secara bersama-sama atau simultan terhadap hasil produksi padi sawah dilahan Food Estate Desa Belanti Siam. Dimana hasil uji F menghasilkan nilai sebesar 6,373> Ftable = 1,966 dengan signifikansi 0,000<0,05. Secara parsial faktor-faktor produksi yang berpengaruh terhadap produksi padi sawah dilahan Food Estate Desa Belanti Siam sebanyak 4 (empat) variabel bebas dengan tingkat signifikans < 0,05 dengan tingkat korelasi berkatah 95% yaitu lahan (X1), benih (X2), kapur (X3), pupuk (X4). Sedangkan 5 (lima) variabel bebas lainnya dalam penelitian ini tidak berpengaruh secara parsial atau tidak signifikan terhadap hasil Produksi Padi Sawah di Lahan Food Estate Desa Belanti Siam seperti, pestisida (X5), tenaga kerja (X6), alsintan (X7), dummy sistem tanam (D1), dummy pola tanam (D2) dengan tingkat signifikans >0,05.

Kata Kunci: Production Factor, Rice, Food Estate

ABSTRAK. This study aims to analyze the production factors of paddy rice farming in an effort to increase rice production in the National Food Estate strategy program in Central Kalimantan. Production factors used by farmers such as land (X1), seeds (X2), lime (X3), fertilizer (X4), pesticides (X5), labor (X6) and alsintan (X7), as well as dummy variables such as planting system (D1), and planting pattern (D2), affect jointly or simultaneously on the results of rice production in Belanti Siam village Food Estate land. Where the F test results show a Fcalculated value of 6.373> Ftable = 1,966 with a significance of 0,000<0,05. Partially, the production factors that affect the production of paddy rice in Food Estate land are 4 (four) independent variables with a significant level of < 0.05 with an error rate of 95%, namely land (X1), seeds (X2), time (X3), fertilizer (X4). While the other 5 (five) independent variables in this study didn’t have a partial or insignificant effect on the results of rice production in Belanti Siam village Food Estate such as, pesticides (X5), labor (X6), alsintan (X7), dummy planting system (D1), dummy planting pattern (D2) with a significant level of >0.05.

Keyword: Faktor Produksi, Padi, Food Estate

INTRODUCTION

The agricultural sector is a sector that has an important role in contributing to Indonesia’s economic structure. Where the agricultural sector is the second largest contributor to Gross Domestic Product (GDP), which acts as a driver of national economic growth (Central Statistics Agency, 2021). Agriculture is the activity of utilizing biological resources to produce food, industrial raw materials and to manage the environment. So that agricultural development becomes one of the main priorities in Indonesia.

Through BPS data (2021), it is also noted that the agriculture, forestry and fisheries sectors contribute 13.28% to the Indonesian economy. The largest contribution from the agricultural sector is mostly contributed by the food crops subsector amounting to 2.60% of GDP. Food plants are plants that produce many important nutrients for the body, which contain carbohydrates and protein as human resources. These food plants produce food to meet human needs.

The World Food and Agriculture Organization (FAO) (2020), predicts that the world, including Indonesia, will face a food crisis as a result of the impact of Covid-19 which is spreading throughout the world. The issuance of the food crisis is a national strategic issue in the world today, where there has been an imbalance between the increase in population and the availability of food, while the need for food has increased sharply. Apart from the impact, the Covid-19 pandemic predicted food...
crisis is also accompanied by the problem of climate change and the transition of agricultural land to residential land (Pantaugambut.id, 2021). For this reason, in responding to this matter, it is necessary to take concrete actions to maintain the food needs of the people of a country in order to achieve food security.

As an agricultural country, Indonesia is a country that always tries to meet its food needs. Responding to the report from FAO, the Indonesian government took immediate action by issuing a decision contained in Presidential Regulation No. 109/2020 concerning the implementation of the National Food Estate Strategy Program to deal with the food crisis (Pantaugambut.id, 2022). Food Estate is a wide-scale food development program carried out in an integrated manner covering agriculture, plantations and animal husbandry in an area (Lasminingrat, 2020). The aim of this program is to build a food production center area through upstream-downstream integration based on precision agriculture, farmer corporations, and ecosystem conservation to create community prosperity and increase national food reserves. This program is implemented in several provinces, including Sumatra, East Nusa Tenggara and Central Kalimantan.

Central Kalimantan was chosen as a place to develop a Food Estate to achieve national food security. Central Kalimantan is the location for this Food Estate program based on Minister of Environment and Forestry Regulation No. 24/2020 concerning the Provision of Forest Areas for Food Estate development, which was later changed to Minister of Environment and Forestry Regulation No. 7/2021 concerning Forest Planning, changes in the designation of forest areas, and use of the area forest. Based on Minister of Environment and Forestry Regulation No 7/2021 article 485 concerning Forest planning, changes in the designation of forest areas and changes in the function of forest areas and use of forest areas.

Central Kalimantan is an ex-PLG area which is dominated by peat. The locations for implementing this program in Central Kalimantan are located in Kapuas Regency and Pulang Pisau Regency as places for Food Estate development (Lasminingrat, 2020). The main commodity for developing the Food Estate program in Central Kalimantan, especially in Kapuas and Pulang Pisau Regencies, is rice. Rice is a grass plant which is one of the identical food producing ingredients in Indonesia. Rice is one of the three food ingredients for rice producers. In Indonesia, rice is one of the staple foods (Lasminingrat, 2020). In order to meet food needs, especially rice, it is necessary to increase rice production so that rice food needs can be met, so that national food security is maintained. Data from the Central Statistics Agency (2021), rice production during the 2021 period was around 54.42 million tons of dry milled grain (GKG), or experienced a decrease of 233.91 thousand tons or around 0.43% compared to 2020. Looking in more detail, the decrease The highest rice production occurred in May 2021, which was around 2.27 million tons lower compared to May 2020. This decrease in production occurred due to a shift in the peak harvest from April 2020 to March 2021.

RESEARCH METHODS

To analyze the data in this research, descriptive and quantitative analysis will be used. Meanwhile, in processing the collected data it will be edited and processed in tabulated form for analysis. Data processing was carried out electronically using software using the SPSS (Statistical Package for the Social Sciences) program and using Frontier 4.1 Software. So the data analysis method in research is to answer the research objectives, using the production function Cobb-Douglas, where this function or equation involves two or more independent variables and a dependent variable. The independent variables in this study are land \((X_1) \), seeds \((X_2) \), lime \((X_3) \), fertilizer \((X_4) \), pesticides \((X_5) \), labor \((X_6) \) and a plant \((X_7) \), as well as dummy variables such as planting system \((D_1) \), and planting pattern \((D_2) \). This quantitative variable will be analyzed to find out what production factors influence lowland rice production, whether they have a positive and significant influence on production. Based on previous research, it is stated that land, fertilizer, pesticides and labor have a positive and significant effect on rice production, and the quantitative variable of machine tools will be analyzed on the grounds that this program uses a lot of modern agricultural technology in helping farmers manage their farming, so what is the role of technology used whether it has a positive or significant effect on lowland rice production. Dummy variables are used to explain qualitative variables into quantitative variables, so you can see whether they have a positive and significant effect on production or not. Meanwhile, the dependent variable is paddy rice production \((Y) \). For this reason, mathematically the Cobb-Douglas production function is written as follows:

\[
Y = aX^{b_1}X^{b_2} \ldots X^{b_i}X^{b_{	ext{neu}}}
\]
1 2 i n

To make it easier to estimate, the Cobb-Douglas production function can be converted into a double natural logarithm form, with the following multiple linear regression form:

\[\ln Y = \ln a + b_1 \ln X_1 + b_2 \ln X_2 + b_3 \ln X_3 + b_4 \ln X_4 + b_5 \ln X_5 + b_6 \ln X_6 + b_D D \]

\[+ b_2 D_2 + e \]

Information:

- \(b_0 \) : Intercept/constant
- \(b_0, b_6 \) : Coefficient of regression direction for each independent variable
- \(Y \) : Lowland Rice Production on Food Estate land (Kg/ha)
- \(X_1 \) : Land (Ha)
- \(X_2 \) : Number of Seeds (Kg)
- \(X_3 \) : Lime (Kg)
- \(X_4 \) : Fertilizer (Kg)
- \(X_5 \) : Pesticide (L)
- \(X_6 \) : Labor (HOK)
- \(X_7 \) : Machinery (Unit)
- \(D_2 \) : Cropping System Dummy Variable
- \(D = 1 \), Jajar legowo
- \(D = 0 \), plant seeds directly
- \(D_3 \) : Plant Pattern Dummy Variable
- \(D = 1 \), Monoculture, \(D = 0 \), Polyculture

Dummy coefficients

After that, to examine whether the production factors used have a joint effect on rice production, an F test will be carried out (F-Test). Meanwhile, to determine the influence of each production factor on farming, a regression coefficient significance test will be carried out using the t test. To see how much the dependent variable contributes to the independent variable, the Coefficient of Determination (R²) test is carried.

Classic assumption test

a. Multicollinearity Test

This multicollinearity test aims to see whether in the regression model a correlation is found between the independent variables. Usually a good regression model if there is no correlation between independent variables means it is free from multicollinearity problems. To see whether there is multicollinearity in the regression model, you can see the following:

a) \(R^2 \) value

b) Multicollinearity can be seen from a tolerance value that is smaller than 0.1 or equal to Variance inflation factor (VIF) value greater than 10.

b. Autocorrelation Test

This test aims to test whether there is a relationship between the residuals from one observation and other observations.

RESULTS AND DISCUSSION

A. Classic Assumption Test

Normality test

The Normality Test is carried out to see whether the regression model is normally distributed. Model A good regression is a model that has a normal data distribution. The results of the normality test on the regression model can be seen in the P-Plot graph in Figure 1.

Table 1. Kolmogorov-Smirnov Test

<table>
<thead>
<tr>
<th>Test</th>
<th>Unstandardized Residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>df</td>
</tr>
<tr>
<td>0.069</td>
<td>89</td>
</tr>
</tbody>
</table>

Figure 1. Normality Test Results

Source: SPSS Processing Results (2023)

Figure 1 shows the results of the normality test on the regression model using the PP Plot table. Based on the test results, it shows that the points follow the diagonal line and spread along the histogram graph. For this reason, based on the test, this research model has a normal distribution. To find out more precisely whether the data is normally distributed, it will also be seen through a statistical test using Kolmogorov Smirnov test.
b. Lilliefors Significance Correction

c. This is a Lower bound of the true significance

Significant or Partial Test (t Test)

To find out what factors have an individual or partial influence on the independent variables land (X₁), seeds (X₂) Table 7. Parsian t test results 1 chalk(X₃), fertilizer(X₄), pesticide(X₅), labor(X₆) and machinery (X₇), as well as dummy variables such as planting system (D₁), and planting pattern (D₂) on the results of lowland rice production on food estate land, a partial significance test will be carried out via the t test.

Determining partial variables can be done in two ways, namely by looking at the significance value (Sig.) and by comparing tcount with ttable. In this study, to see the influence of the independent variables partially, it will be seen with a significance value of 0.05 (5%) at an error rate of 95%. The results of the t test analysis show that the independent variables that have an influence can be seen in Table 7

Coefficients *

<table>
<thead>
<tr>
<th>Model</th>
<th>Coefficienta Coefficients t Sig.</th>
<th>B</th>
<th>Std. Error</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Constant)</td>
<td></td>
<td>5,511</td>
<td>.980</td>
<td>5,622</td>
</tr>
<tr>
<td>Wide Land</td>
<td></td>
<td>.118</td>
<td>.053</td>
<td>.240</td>
</tr>
<tr>
<td>Amount Seed</td>
<td></td>
<td>.206</td>
<td>.092</td>
<td>.223</td>
</tr>
<tr>
<td>Chalk</td>
<td></td>
<td>.158</td>
<td>.060</td>
<td>.270</td>
</tr>
<tr>
<td>Fertilizer</td>
<td></td>
<td>.155</td>
<td>.066</td>
<td>.219</td>
</tr>
<tr>
<td>Pesticide</td>
<td></td>
<td>-.080</td>
<td>.096</td>
<td>-.080</td>
</tr>
<tr>
<td>Power Work</td>
<td></td>
<td>.069</td>
<td>.079</td>
<td>.079</td>
</tr>
<tr>
<td>Machinery</td>
<td></td>
<td>.100</td>
<td>.500</td>
<td>.018</td>
</tr>
<tr>
<td>System plant</td>
<td></td>
<td>.051</td>
<td>.069</td>
<td>.070</td>
</tr>
<tr>
<td>Pattern plant</td>
<td></td>
<td>-.037</td>
<td>.080</td>
<td>-.043</td>
</tr>
</tbody>
</table>

a. Dependent Variable : Rice Production Results

Note: ***: Significant at α = 1%

** : Significant at α = 5%

* : Significant at α = 10%

ns: Non-significant.

Table 7 shows the independent variables that partially influence the results of lowland rice production in the Belanti Siam village food estate, using a significance of 0.05 (α = 5%) or an error rate of 95%. Based on individual or partial significance tests, of the 9 (nine) independent variables hypothesized, namely land (X₁), seeds (X₂), lime (X₃), fertilizer (X₄), pesticides (X₅), energy work (X₆) and alsintan (X₇), as well as dummy variables such as planting system (D₁), and planting pattern (D₂) on the dependent variable, namely lowland rice production on the Food Estate land (Y). So we obtained 4 (four) independent variables that had a significant or partial influence, including land (X₁), number of seeds (X₂), lime (X₃), fertilizer (X₄), with a significant value of <0.05. Meanwhile, the other 5 (five) independent variables do not have a significant effect on the dependent variable t.

CONCLUSIONS AND RECOMMENDATIONS

Conclusion

Based on the results of the analysis and discussion of rice production factors that influence the results of lowland rice production in the Desa Belanti Siam food estate, it can be concluded as follows:

1. Paddy rice farming on the Food Estate land in
Belanti Siam Village is cultivated on peat swamp land with tidal rice fields. Planting period is a year or with IP 200. Carried out in October-March and April- September. The management of lowland rice farming starts from processing to post-harvest. Rice farming in the Food Estate of Belanti Siam village is classified as mechanized, with the use of modern agricultural technologies such as hand tractors, electric sprayers, combine harvesters. The land is generally owned byyourself, with a potential land area of 2 hectares. The varieties used in farming are new superior varieties (VUB).

2. Inbred and hybrid varieties. The planting system used is a direct seed planting system and a transplanting system using row legowo. The crop pattern used is the rice monoculture pattern. The results of rice production are sold in the form of milled dry grain which is sold at an average price of IDR 6,000- 6,200/Kg.

3. Production factors used by farmers such as land (X), seeds (X0), lime (X0), fertilizer (X0), pesticides (X0), labor (X0) and agricultural machinery (X0), as well as dummy variables such as planting system (D0), and planting pattern (D1) have a joint or simultaneous effect on lowland rice production results in the Food Estate land in Belanti Siam village. Where the F-test results show an F count value of 6,373> Ftable 1.966 with a significance of 0.000 < 0.05. Partially, there are 4 independent variables with a significant level of <0.05 with an error rate of 95%, namely Land (X0), Seed (X0), Lime (X0), partial production factors that influence lowland rice production on Food Estate land. Fertilizer(X0). Meanwhile, the other 5 (five) independent variables in this study did not have a partial or significant effect on the results of paddy production in the Food Estate Land in Belanti Siam village, such as, pesticides (X0), labor(X0), agricultural machinery (X0), Dummy cropping system (D0), Dummy cropping pattern (D2) with a significance level of >0.05.

4. Farmers who cultivate lowland rice farming on Food Estate land are classified as technically efficient in using production factors with a cut-off value >0.70, that the average productivity achieved is around 96.5% of the frontier. Individually, only 88 farmers are classified as technically efficient in the use of production factors. Rice production results in Pulang Pisau Regency in 2022 are 61,307 smaller than in 2021. Likewise, in Pandih Batu sub- district, rice production results in 2022 are smaller than in 2022. Factors that influence the effect of inefficiency are the length of education and age of the farmer. Meanwhile, the inefficiency effect of farming experience does not guarantee that inefficiency can be reduced.

Suggestion

1. There needs to be a policy to increase subsidies for lime and fertilizer to farmers, as production inputs in managing lowland rice farming so that they can secure the amount of lime and fertilizer needed during production. There is a need to review the use of technology that is suitable for use on land in Belanti Siam Village, so that machine tools can be used optimally.

2. There is a need for the role of field agricultural instructors to be able to encourage and train farmers technically in using it machine tools so possible Farmer to improve aspects of cultivation, especially the process of maintaining paddy fields. Farmers must be able to maintain the level of technical efficiency in using all existing production factors optimally. So that it can increase paddy rice production to the maximum.

BIBLIOGRAPHY

Yogyakarta.

Indonesia. Ministry Environment Life And Forestry Number 7 Year 2021 about Planning Forestry, Change Allotment Region Forests and Changes in Forest Area Functions, and Area Use Forest. Jakarta.

Affecting Tidal Rice Production in Villages Kuala Two Subdistrict River Raya Regency Fort Raya. Journal Agribusiness.

